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Supplementary tables and notes 

Table S1. Characteristics of participants 
	

 
Controls MDD 

 
Test 

 
Mean SD Mean SD P value 

 
n = 320 

 
n = 812 

     Sex 0.591 0.492 0.667 0.471 0.018 
   Age 41.61 14.64 41.53 12.25 0.912 
   IDS 5.022 3.533 33.79 10.94 <0.001 

Note: n is number of samples left after quality control. Sex indicates the proportion of 
males, age is measured in years. The IDS (Inventory of Depressive Symptomatology) is 
a self-report measure of symptom severity. 
	

Genotype information 

The NESDA participants were genotyped as previously described.1 In short, the 

majority (95.2%) of DNA samples from the NESDA study were genotyped on 

Affymetrix 6.0 Human SNP array, while the remaining samples were genotyped 

on Perlegen-Affymetrix 5.0 array.  In the quality control (QC) process, samples 

were excluded based on the following criteria: Affymetrix contrast QC < 0.4; 

missing rate > 10%; excess genome-wide heterozygosity or inbreeding levels (F 

< -0.075 or > 0.075); genotypes inconsistencies with reported gender; mendelian 

error rate > 5 standard deviations (SDs) from the mean of all samples; non-

European/non-Dutch ancestry as indicated by principal component analysis.  

SNPs were excluded for the following reasons: probes mapped badly 

against NCBI Build 37/UCSC hg19; minor allele frequency (MAF) < 0.005; 

missing rate > 5%; deviation from Hardy–Weinberg equilibrium (HWE) p< 1e-12;  

SNPs present in both arrays were cross-imputed using GONL reference 

panel2. After imputation SNPs were converted to best guess genotypes using 
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Plink 1.903 and were removed if meeting the following more stringent criteria: a 

significant association with a single genotyping platform as compared to the other 

(p < 10-5); an allele frequency difference > 10% with the GONL reference set; 

HWE p < 10-5, Mendelian error rate > 5SDs (N>40); imputation quality R2< 0.90. 

The resulting data were then imputed using 1000G Phase 3 all ancestries 

reference panel via the Michigan Imputation Server4. Among the imputed SNPs, 

those retained for the present analyses met the following criteria: allele frequency 

difference < 5SDs of the mean of all SNPs with the reference set; HWE p > 10-5, 

Mendelian error rate < 5 SDs; MAF >0.01; R2>0.5. 

Quality control and CpG score calculation of methylation data 

As recently explained (Aberg et al submitted), we performed thorough quality 

control of reads, samples, and CpGs5. Of the 1,200 selected NESDA samples, 

34 were excluded because the methylation enrichment (N=16) or library 

construction (N=18) failed. Reads aligning to loci without CpGs (non-CpGs) 

represent “noise” caused by, for example, alignment errors or imperfect 

enrichment leading to non-methylated fragments being sequenced. The average 

non-CpG to CpG coverage ratio was 0.012 (SD=0.025). Using a threshold of 

0.05 to remove samples with high “noise” levels (N=10), left an average non-CpG 

to CpG coverage ratio of 0.010 (SD=0.005) in the remaining samples. For 10 

samples, sequence variants called from the methylation data did not match the 

genotype information obtained from a previous GWAS of these samples6. This 

indicated that a sample swap or sample contamination may have occurred. As it 

was not possible to determine whether the problem occurred in the GWAS or 
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MWAS data, we conservatively excluded all 10 samples from further analysis. 

Finally, we used the R function 'pcout' in the 'mvoutliers' package (with the upper 

boundary for outlier detection set to 15, the scaling constant set to 0.5, and the 

boundary for final outliers set to 0.2) to identify multidimensional outliers using 

the first 15 principal components of the methylation data as input. Fourteen 

samples were identified as multidimensional outliers and omitted. This left a 

sample of 1,132 subjects for statistical analysis. 

The mean number of reads for the 1,132 remaining samples was 59.4 

million (SD=11.2 million) of which, on average, 99.1% aligned. Aligned reads 

were subjected to further quality control. Although reads often map to multiple 

genomic locations, in most cases, a single alignment can be selected because it 

is clearly better than other alignments. In the case of multi-reads, multiple 

alignments receive equally good alignment scores. When Bowtie2 encounters 

multi-reads, it uses a pseudo-random number generator to select a single 

primary alignment. Duplicate-reads are reads that start at the same nucleotide 

positions. When sequencing a whole genome, duplicate-reads typically arise 

from artifacts in template preparation or amplification. However, in the context of 

sequencing an enriched genomic fraction, duplicate-reads are increasingly likely 

to occur because reads originate from a smaller fraction of the genome. 

Therefore, only when more than 3 (duplicate) reads start at the same position, 

we reset the read count to 1 implicitly assuming these reads are tagging a single 

clonal fragment. This left an average of 48.7 million reads per sample (=81.9% of 

all reads). 
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To identify all common CpGs, we combined reference genome sequence 

(hg19/GRCh37) with SNP information from the European super-population on 

the 1000 Genomes project (Phase 3). To avoid analyzing sites that are CpGs in 

only a very small proportion of subjects, we excluded CpGs created/destroyed by 

SNPs that had a minor allele frequency <1%. This resulted in 27,916,990 CpGs. 

Additionally, CpGs in loci prone to alignment errors, e.g., in repetitive regions, 

were eliminated prior to the analysis. To identify these CpGs, we used RaMWAS 

to perform an in silico alignment experiment outlined elsewhere that aligns all 

possible reads to the reference5. The vast majority of CpGs (89.3%) were located 

in regions that showed perfect alignment coverage. Only 1.3% of the CpGs 

showed evidence of alignment problems (defined as 15% or more reads from this 

locus not aligning properly) and were removed from further analyses. Finally, 

akin to filtering SNPs with low minor allele frequency, we eliminated 5,682,206 

CpGs with average coverage less than 0.3. These sites may create false positive 

MWAS findings due to low power or statistical problems associated with 

analyzing sparse data. After all quality control, 21,869,561 CpGs remained. 

Among these, 970,414 were CpGs that can be created or destroyed by common 

SNPs available for methylome-wide association study (MWAS) of CpG-SNPs.  

Methylation scores were calculated by estimating the number of fragments 

covering the CpG using a non-parametric estimate of the fragment size 

distribution7. These scores provide a relative measure of the amount of 

methylation for each individual at that specific site.  
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Figure S1. Regression plots of the 27 suggestively significant CpG-SNP 
MWAS associations.  

 
The methylation coverage (y-axis) is plotted for cases (red circles) and controls (blue squares) 
against the CpG count (x-axis). The fitted regression lines are indicated for cases (red) and 
controls (blue). 
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Figure S1 - continued. Regression plots of the 27 suggestively significant 
CpG-SNP MWAS associations.  

 

The methylation coverage (y-axis) is plotted for cases (red circles) and controls (blue squares) 
against the CpG count (x-axis). The fitted regression lines are indicated for cases (red) and 
controls (blue). 
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Figure S1 - continued. Regression plots of the 27 suggestively significant 
CpG-SNP MWAS associations.  

 

The methylation coverage (y-axis) is plotted for cases (red circles) and controls (blue squares) 
against the CpG count (x-axis). The fitted regression lines are indicated for cases (red) and 
controls (blue). 
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Table S2. Sites included in overlap between CpG-SNP MWAS and GWAS 

Chr. CpG start CpG end CpG-SNP MWAS 
Corrected P 

hgnc 
symbol Rs number GWAS 

2 53,682,501 53,682,502 5.31E-03 
 

rs4672433 Converge 
2 153,102,914 153,102,915 7.95E-03 

 
rs11679305 Converge 

2 161,916,845 161,916,846 2.46E-03 
 

rs1114339 SSGAC 
2 228,860,909 228,860,910 3.79E-03 SPHKAP rs11883583 Converge 
2 228,887,673 228,887,674 6.35E-03 SPHKAP rs6736430 Converge 
2 236,766,646 236,766,647 3.79E-03 AGAP1 rs10208161 Converge 
3 13,106,302 13,106,303 7.93E-03 IQSEC1 rs360875 Converge 
3 34,826,776 34,826,777 8.88E-04 

 
rs622563 SSGAC 

3 49,690,496 49,690,497 2.50E-03 BSN rs11709525 SSGAC 
3 71,983,098 71,983,099 2.07E-03 

 
rs11706411 SSGAC 

3 76,566,129 76,566,130 5.25E-05 ROBO2 rs3901063 Converge 
4 6,344,983 6,344,984 3.43E-03 PPP2R2C rs4689413 SSGAC 
4 9,997,112 9,997,113 3.23E-03 SLC2A9 rs4529048 SSGAC 
4 104,233,989 104,233,990 5.00E-03 

 
rs11938459 Converge 

4 111,278,757 111,278,758 2.50E-03 
 

rs472305 Converge 
4 138,963,965 138,963,966 2.74E-04 LINC00616 rs4863756 SSGAC 
5 39,908,712 39,908,713 8.84E-04 

 
rs582489 SSGAC 

5 45,716,209 45,716,210 3.86E-04 
 

rs2879074 SSGAC 
5 87,513,775 87,513,776 7.93E-03 TMEM161B rs357513 23andMe 

5 87,592,024 87,592,025 5.65E-03 
TMEM161B-

AS1 rs247909 23andMe 
5 164,413,592 164,413,593 2.59E-03 

 
rs10057578 SSGAC 

6 31,107,733 31,107,734 6.93E-03 PSORS1C1 rs1966 Converge 
6 35,114,542 35,114,543 1.29E-03 TCP11 rs2038740 Converge 
6 134,582,426 134,582,427 3.21E-03 SGK1 rs4896036 Converge 
6 163,612,783 163,612,784 1.55E-03 PACRG rs6937392 Converge 
7 125,774,883 125,774,884 6.66E-03 

 
rs607038 Converge 

7 133,345,526 133,345,527 4.44E-03 EXOC4 rs7792396 SSGAC 
8 11,646,934 11,646,935 4.10E-03 

 
rs904015 SSGAC 

9 11,602,902 11,602,903 2.03E-03 
 

rs4524892 SSGAC 
9 120,510,180 120,510,181 3.09E-03 

 
rs10818080 SSGAC 

10 133,253,402 133,253,403 6.71E-03 
 

rs3123187 SSGAC 
11 87,134,768 87,134,769 7.23E-04 

 
rs1001592 Converge 

12 14,846,187 14,846,188 7.54E-03 GUCY2C rs11056101 Converge 
13 29,096,237 29,096,238 1.47E-03 

 
rs9506000 Converge 

13 53,858,586 53,858,587 2.20E-03 
 

rs9596774 23andMe 
13 94,051,114 94,051,115 7.40E-03 GPC6 rs2762111 SSGAC 
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14 72,977,524 72,977,525 7.19E-03 RGS6 rs2286069 SSGAC 
14 95,337,640 95,337,641 5.54E-03 

 
rs8006342 Converge 

14 104,559,919 104,559,920 7.44E-03 ASPG rs1770984 Converge 
15 88,456,089 88,456,090 7.77E-04 NTRK3 rs3903308 Converge 
16 5,061,971 5,061,972 8.39E-03 SEC14L5 rs1558560 Converge 
16 23,563,501 23,563,502 2.02E-03 EARS2 rs7187920 Converge 
16 52,638,503 52,638,504 4.42E-03 CASC16 rs3104788 SSGAC 
16 87,988,440 87,988,441 3.10E-04 BANP rs7194067 Converge 
17 31,798,177 31,798,178 3.91E-03 ASIC2 rs1553496 Converge 
17 43,513,441 43,513,442 9.35E-04 PLEKHM1 rs11012 SSGAC 
17 77,889,833 77,889,834 6.25E-03 

 
rs1696784 Converge 

18 8,363,474 8,363,475 7.33E-03 PTPRM rs1318213 Converge 
18 22,989,031 22,989,032 5.65E-03 

 
rs7240037 Converge 

18 50,608,436 50,608,437 5.09E-03 DCC rs9949889 SSGAC 
18 57,136,111 57,136,112 3.78E-03 CCBE1 rs17065849 Converge 
18 57,837,224 57,837,225 3.88E-03 

 
rs1619975 SSGAC 

18 69,361,739 69,361,740 5.31E-03 
 

rs1942355 SSGAC 
19 46,289,503 46,289,504 2.27E-03 DMWD rs8109951 SSGAC 
22 22,036,512 22,036,513 4.50E-03 PPIL2 rs881091 SSGAC 

Note: Chr. is chromosome. * Corrected P values are reported. 
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